2.00

The challenge for businesses is to seek answers to questions, they do this with Metrics (KPI’s) and know the relationships of the data, organized by logical categories(dimensions) that make up the result or answer to the question. This is what constitutes the Information Value Chain
Let’s assume that you have a business problem, a business question that needs answers and you need to know the details of the data related to the business question.
In today’s fast-paced high-tech business world this basic navigation (drill thru) business concept is fundamental and seems to be overlooked, in the zeal to embrace modern technology
In our quest to embrace fresh technological capabilities, a business must realize you can only truly discover new insights when you can validate them against your business model or your businesses Information Value Chain, that is currently creating your information or results.
Today data needs to be deciphered into information in order to apply formulas to determine relationships and validate concepts, in real time.
We are inundated with technical innovations and concepts it’s important to note that business is driving these changes not necessarily technology
Business is constantly striving for a better insights, better information and increased automation as well as the lower cost while doing these things several of these were examined
Historically though these changes were few and far between however innovation in hardware storage(technology) as well as software and compute innovations have led to a rapid unveiling of newer concepts as well as new technologies
In this article we’re going to review the basic principles of information governance required for a business measure their performance. As well as explore some of the connections to some of these new technological concepts for lowering cost
To a large degree I think we’re going to find that why we do things has not changed significantly it’s just how, we know have different ways to do them.
It’s important while embracing new technology to keep in mind that some of the basic concepts, ideas, goals on how to properly structure and run a business have not changed even though many more insights and much more information and data is now available.
My point is in the implementing these technological advances could be worthless to the business and maybe even destructive, unless they are associated with a actual set of Business Information Goals(Measurements KPI’s) and they are linked directly with understandable Business deliverables.
And moreover prior to even considering or engaging a data science or attempt data mining you should organize your datasets capturing the relationships and apply a “scoring” or “ranking” process and be able to relate them to your business information model or Information Value Chain, with the concept of quality applied real time.
The foundation for a business to navigate their Information Value Chain is an underlying Information Architecture. An Information Architecture typically, involves a model or concept of information that is used and applied to activities which require explicit details of complex information systems.
Subsequently a data management and databases are required, they form the foundation of your Information Value Chain, to bring this back to the Business Goal. Let’s take a quick look at the difference between relational database technology and graph technology as a part of emerging big data capabilities.
However, considering the timeframe for database technology evolution, has is introduced a cultural aspect of implementing new technology changes, basically resistance to change. Business that are running there current operations with technology and people form the 80s and 90s have a different perception of a solution then folks from the 2000s.
Therefore, in this case regarding a technical solution “perception is not reality awarement is”. Business need to find ways to bridge the knowledge gap and increase awarement that simply embracing new technology will not fundamentally change the why a business is operates , however it will affect how.
Relational databases were introduced in 1970, and graph database technology was introduced in the mid to 2000
There are many topics included in the current Big Data concept to analyze, however the foundation is the Information Architecture, and the databases utilized to implement it.
There were some other advancements in database technology in between also however let’s focus on these two
In a 1970s relational database, Based on mathematical Set theory, you could pre-define the relationship of tabular (tables) , implement them in a hardened structure, then query them by manually joining the tables thru physically naming attributes and gain much better insight than previous database technology however if you needed a new relationship it would require manual effort and then migration of old to new , In addition your answer it was only good as the hard coding query created
In mid-2000’s the graph database was introduced , based on graph theory, that defines the relationships as tuples containing nodes and edges. Graphs represent things and relationships events describes connections between things, which makes it an ideal fit for a navigating relationship. Unlike conventional table-oriented databases, graph databases (for example Neo4J, Neptune) represent entities and relationships between them. New relationships can be discovered and added easily and without migration, basically much less manual effort.
Graphs are made up of ‘nodes’ and ‘edges’. A node represents a ‘thing’ and an edge represents a connection between two ‘things’. The ‘thing’ in question might be a tangible object, such as an instance of an article, or a concept such as a subject area. A node can have properties (e.g. title, publication date). An edge can have a type, for example to indicate what kind of relationship the edge represents.
The takeaway there are many spokes on the cultural wheel, in a business today, encompassing business acumen, technology acumen and information relationships and raw data knowledge and while they are all equally critical to success, the absolute critical step is that the logical business model defined as the Information Value Chain is maintained and enhanced.
It is a given that all business desire to lower cost and gain insight into information, it is imperative that a business maintain and improve their ability to provide accurate information that can be audited and traceable and navigate the Information Value Chain Data Science can only be achieved after a business fully understand their existing Information Architecture and strive to maintain it.
Note as I stated above an Information Architecture is not your Enterprise Architecture or even Data Architecture Information Relationships it is the hierarchical design of shared information environments; the art and science of organizing and labelling gGossary terms, transactions to support usability and findability; in an emerging community of practice focused on bringing principles of design, architecture and information science to the digital landscape. Typically, it involves a model or concept of information that is used and applied to activities which require explicit details of complex information systems.
In essence, a business needs a Rosetta stone in order translate past, current and future results.
In future articles we’re going to explore and dive into how these new technologies can be utilized and more importantly how they relate to all the technologies.
Information lineage through data DNA
Ira Warren Whiteside
We in IT have complicated and diluted the concept and process of analyzing data and business metrics incredibly in the last few decades. We seem to be focusing on the word data.
“There is a subtle difference between data and information.”
There is a subtle difference between data and information. Data are the facts or details from which information is derived. Individual pieces of data are rarely useful alone. For data to become information, data needs to be put into context.
The history of temperature readings all over the world for the past 100 years is data.
If this data is organized and analyzed to find that global temperature is rising, then that is information.
The number of visitors to a website by country is an example of data.
Finding out that traffic from the U.S. is increasing while that from Australia is decreasing is meaningful information.
Often data is required to back up a claim or conclusion (information) derived or deduced from it.
For example, before a drug is approved by the FDA, the manufacturer must conduct clinical trials and present a lot of data to demonstrate that the drug is safe.
Because data needs to be interpreted and analyzed, it is quite possible — indeed, very probable — that it will be interpreted incorrectly. When this leads to erroneous conclusions, it is said that the data are misleading. Often this is the result of incomplete data or a lack of context.
For example, your investment in a mutual fund may be up by 5% and you may conclude that the fund managers are doing a great job. However, this could be misleading if the major stock market indices are up by 12%. In this case, the fund has underperformed the market significantly.
Synthesis: the combining of the constituent elements of separate material or abstract entities into a single or unified entity ( opposed to analysis, ) the separating of any material or abstract entity into its constituent elements.
Data into Information is dominant in terms of data movement and replication, in essence data logistics.
And with the simple action of linking data file metadata names to a businesses glossary or terms, Will result in deeply insightful and informative business insight and analysis.
“Analysis the separating of any material or abstract entity into its constituent elements”
In order for a business manager for analysis you need to be able to start the analysis at a understandable business terminology.
And then provide the manager with the ability to decompose or break apart the result.
They are three essential set of capabilities and associated techniquestechniques for analysis and lineage.
Underlining each of these capabilities is a set of refined, developed and proven code says for accomplishing these basic fundamental task.
I have been in this business over 45 years and I’d like to offer one example of the power of the concept of a meta-data mart and lineage as it regards to business insight.
A lineage, information and data story for BCBS
I was called on Thursday and told to attend a meeting on Friday between our companies leadership and the new Chief Analytics Officer. He was prototypical of the new IT a “new school” IT Director.
I had been introduced via LinkedIn to this director a week earlier as he had followed one of my blogs on metadata marts and lineage.
After a brief introduction, our leadership began to speak and the director immediately held up his hand he said “Please don’t say anything right now the profiling you provided me is at the kindergarten level and you are dishonest”
The project was a 20 week $900,000 effort and we were in week 10.
The company has desired to do a proof of concept and better understand the use of the informatics a tool DQ as well as direction for a data governance program.
To date what had been accomplished was in a cumulation of hours of effort in billing that has not resulted in any tangible deliverable.
The project had focused on the implementation and functionally of the popular vendor tool, canned data profiling results and not providing information to the business.
The director commented on my blog post and asked if we could achieve that at his company, I of course said yes.
Immediately I proposed we use the methodology that would allow us to focus on a tops down process of understanding critical business metrics and a bottoms up process of linking data to business terms.
My basic premise was that unless your deliverable from a data quality project can provide you business insight from the top down it is of little value. In essence you’ll spend $900,000 to tell a business executive they have dirty data. At which point he will say to you “so what’s new”.
The next step was to use the business terminology glossary that existed in informatica metadata manager and map those terms to source data columns and source systems, not an extremely difficult exercise. However this is the critical step in providing a business manager the understanding and context of data statistics.
The next step, was the crucial step in which we made a slight modification to the IDQ tool and allowed the storing of the profiling results into a meta-data mart and the association of a business dimension from the business glossary the reporting statistics.
We were able to populate my predefined metadata mart dimensional model by using the tool the company and already purchased.
Lastly by using a dimensional model we were able to allow the business to apply their current reporting tool.
Upon realizing the issues they faced in their business metrics, they accelerated the data governance program and canceled the data lake until a future date.
Within six weeks we provided an executive dashboard based on a meta-data mart that allowed the business to reassess their plans involving governance and a data lake.
Here are some of the results of their ability to analyze their basic data statistics but mapped to their business terminology.
J
Data Governance FULL STOP
https://lnkd.in/gFhfRgtx
#DataGovernance #InformationValueChain #DataMartz #CriticalThinking #IVC
if you wanna be healthy , eat well , no diet , eliminate disease (Alzheimer’s, Type 2 diabetes, kidney, heart, etc,,) . Period.)just watch this one video I’ve done it. none of these diseases existed in the 1800s they came after the. Civil War introduced processed foods from 1865 to 1910 this was a experiment without INFORMED CONSENT we are being poisoned We are led to believe that medical treatment has improved that is true however if he CONSIDER LESS women dying in childbirth and children’s / infant deaths we are not living longer and the and the increase in the rate of these diseases has increased exponentially in the last 100 years only. keep in mind the planet is 5 billion years old SEED OILS QRE KILLING US Safflower oil, Corn oil, Canola oil, cottonseed oil, grapeseed oil, sunflower oil
Diseases of civilization are cause by excessive Seedoil‘s Consumption
Dr. Chris Knobbe
Absolutely amazing to me how spot on both 1984 and a brave in the world books from the 1950s describe exactly what’s happening today with our current leadership
Awarenent compare and contrast was described in this book to what’s happening today under the current leadership
excellent science based, fact based presentation on where we came from which is realistically a blend of Darwinism and intelligent design we still don’t know but it looks to me like now we’re at least letting signs come out and there are many things we don’t understand excellent presentation #DNA #information governance #artificialintelligence #AI #Misinformation #Darwinism #Data #Informationvaluechain #Data governance